Ref. 3. The agreement is excellent. Similar agreement has been found for both minimum and maximum atomic oxygen densities. Hence, this technique relates Kapton ground data to space-flight results.

This analysis can be extended to other materials. If the reaction efficiency is known, then the constant K would be equal to the reaction efficiency times the material density. This approach assumes that the energy dependence remains at 0.6 power. This was done for Teflon, and the results compared with those given in Ref. 3 (see Fig. 4). The Teflon reaction efficiency used in this comparison is 1.08×10^{-25} cm³/atom. The agreement is still good.

If there were a new material for which atomic oxygen surface erosion rate in space was desired, then it could be obtained from ground tests using this technique. The mass loss would have to be obtained at any two different energies so that a curve similar to Fig. 1 could be obtained. The technique from then on is straightforward.

Concluding Remarks

A technique has been developed that allows the computation of material losses due to atomic oxygen erosion of surfaces on an inertially stabilized spacecraft in a low Earth orbit from ground-based test results. The computations have been compared to the results of Shuttle tests, and the agreement is excellent for Kapton and Teflon. The technique can be applied to gravity-gradient stabilized spacecraft. The advantage of using this approach is that it allows ground-test data to be used to predict surface erosion of newly developed materials and coatings. This alleviates the need for separate space-flight testing of all materials and coatings to qualify them for low Earth orbit operations.

Acknowledgment

This work was partially supported by the Air Force Geophysics Laboratory under contract F19627-84-C-0038.

References

¹Leger, L. J., "Oxygen Atom Reaction with Shuttle Materials at Orbital Altitudes," NASA TM-58246, May 1982.

²Leger, L. J., Spiker, I. K., Kuminez, J. F., Ballentine, T. J., and Visentine, J. T., "STS Flight 5 LEO Effects Experiment-Background Description and Thin Film Results," AIAA Paper 83-2631, Oct. 1983.

³Leger, L. J., Visentine, J. T., and Kuminecz, J. F., "Low Earth Orbit Atomic Oxygen Effects on Surfaces," AIAA Paper 84-0548, Jan. 1984.

⁴Fristrom, R. M., Benson, R. C., Bargeron, C. B., Phillips, T. E., Vest, C. E., Hoshall, C. H., Satkiewicz, F. G., and Vy, O. M., "Studies of Erosion of Solar Max Samples of Kapton and Teflon," *Proceedings of the SMRM Degradation Study Workshoip*, NASA Goddard Space Flight Center, 408-SMRM-79-001, May 1985, pp. 227-241.

⁵Whitaker, A. F., Burka, J. A., Coston, J. E., Dallins, I., Little, S. A., and Deltaye, R. F., "Protective Coatings for Atomic Oxygen Susceptible Spacecraft Materials—STS-41G Results," AIAA Paper 85-7017, Nov. 1985.

⁶Ferguson, D. C., "The Energy Dependence and Surface Morphology of Kapton Degradation Under Atomic Oxygen Bombardment," *Proceedings of the 13th Space Simulation Conference*, NASA Goodard Space Flight Center, Oct. 1984, pp. 205–221.

⁷Arnold, G.S., Peplinski, D. R., and Cascarno, F. M., "Translational Energy Dependence of the O+ Polyimide Reaction," AIAA Paper 85-7016-CP, Nov. 1985.

⁸Leger, L. J. and Visentine, J. T., "A Consideration of Atomic Oxygen Interactions with the Space Station," *Journal of Spacecraft and Rockets*, Vol. 23, Sept.-Oct. 1986, pp. 505-511.

⁹Ferguson, D. C., private communication, 1985.

¹⁰Minzner, R. A. (ed.), "The 1976 Standard Atmosphere Above 86 km Altitude," NASA SP-398, 1976.

Errata

Optimum Heat Rejection Temperatures for Spacecraft Heat Pumps

D. K. Edwards and R. F. Richards University of California, Irvine, Irvine, California

[JSR 26, pp. 303-307 (1989)]

On page 305, the fourth sentence under the heading "Constant ϕ_E , ϕ_R HDHP" was printed incorrectly in the published paper, distorting the authors' intended meaning. The sentence should appear as follows (changes have been italicized):

"The lift rises to 280 K, the drop rises to 320 K, and M/M_S rises to 0.80."

Closed-Form Approach to Rocket-Vehicles Aeroelastic Divergence

Dov Elyada Israel Armament Development Authority Haifa, Israel

[JSR 26, pp. 95-102 (1989)]

A NUMBER of errors were inadvertently introduced during production of this paper. We apologize for any inconvenience caused to the author or the readers.

Page 97:

The plus sign in Eq. (3) was omitted in the published paper; the equation should appear as follows:

In Eq. (7d), "(rigid static margin)" is the meaning of the quantity h_0 .